\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\) [243]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 177 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {11 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

-1/2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2)+11/4*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c
)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+7/6*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)-1
9/6*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2845, 3063, 12, 2861, 211} \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {11 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(11*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d
) - Sin[c + d*x]/(2*d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)) + (7*Sin[c + d*x])/(6*a*d*Cos[c + d*x]^(3
/2)*Sqrt[a + a*Cos[c + d*x]]) - (19*Sin[c + d*x])/(6*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2845

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\frac {7 a}{2}-2 a \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {-\frac {19 a^2}{4}+\frac {7}{2} a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{3 a^3} \\ & = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {33 a^3}{8 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{3 a^4} \\ & = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {11 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{4 a} \\ & = -\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {11 \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 d} \\ & = \frac {11 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}}+\frac {7 \sin (c+d x)}{6 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 8.23 (sec) , antiderivative size = 589, normalized size of antiderivative = 3.33 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {\cot ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (-80 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \, _4F_3\left (2,2,2,\frac {7}{2};1,1,\frac {11}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )+120 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (2,2,\frac {7}{2};1,\frac {11}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-5+4 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+21 \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^3 \sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-15 \text {arctanh}\left (\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \left (-392+2347 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-5391 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+5972 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-3232 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+696 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-5880+37165 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-89856 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+103992 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-58336 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+12960 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{945 d (a (1+\cos (c+d x)))^{3/2} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{7/2}} \]

[In]

Integrate[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(Cot[c/2 + (d*x)/2]^3*Csc[c/2 + (d*x)/2]^4*Sec[(c + d*x)/2]^2*(-80*Cos[(c + d*x)/2]^6*HypergeometricPFQ[{2, 2,
 2, 7/2}, {1, 1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^10 + 120*Cos[(c
 + d*x)/2]^4*HypergeometricPFQ[{2, 2, 7/2}, {1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin
[c/2 + (d*x)/2]^10*(-5 + 4*Sin[c/2 + (d*x)/2]^2) + 21*(1 - 2*Sin[c/2 + (d*x)/2]^2)^3*Sqrt[Sin[c/2 + (d*x)/2]^2
/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-15*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*(-392 +
 2347*Sin[c/2 + (d*x)/2]^2 - 5391*Sin[c/2 + (d*x)/2]^4 + 5972*Sin[c/2 + (d*x)/2]^6 - 3232*Sin[c/2 + (d*x)/2]^8
 + 696*Sin[c/2 + (d*x)/2]^10) + Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-5880 + 37165*Sin[c/
2 + (d*x)/2]^2 - 89856*Sin[c/2 + (d*x)/2]^4 + 103992*Sin[c/2 + (d*x)/2]^6 - 58336*Sin[c/2 + (d*x)/2]^8 + 12960
*Sin[c/2 + (d*x)/2]^10))))/(945*d*(a*(1 + Cos[c + d*x]))^(3/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2))

Maple [A] (verified)

Time = 4.68 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.26

method result size
default \(-\frac {\left (33 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+19 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+66 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+12 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+33 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-4 \sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{12 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )^{2} a^{2}}\) \(223\)

[In]

int(1/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/12/d*(33*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+19*2^(1/2)*cos(d*x+c)
^2*sin(d*x+c)+66*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))+12*sin(d*x+c)*co
s(d*x+c)*2^(1/2)+33*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))-4*2^(1/2)*sin(d
*x+c))*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(3/2)/(1+cos(d*x+c))^2*2^(1/2)/a^2

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.05 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {33 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (19 \, \cos \left (d x + c\right )^{2} + 12 \, \cos \left (d x + c\right ) - 4\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(33*sqrt(2)*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*
x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*sqrt(a*cos(d*x +
c) + a)*(19*cos(d*x + c)^2 + 12*cos(d*x + c) - 4)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a
^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^(3/2)), x)